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Abstract
We develop a simple approach based on time-independent perturbation theory
that leads to a frequency operator for quantum mechanical models. This method
is suitable for the calculation of time-dependent physical properties free from
secular terms. In particular we obtain the first-order perturbation correction to
the frequency operator for a class of anharmonic oscillators.

PACS number: 0365

1. Introduction

In a recent paper Pathak [1] applied first-order perturbation theory to the Heisenberg equations
of motion for quantum mechanical anharmonic oscillators in order to generalize previous
results derived by means of multiple-scale analysis [2, 3]. Such an approximation leads to a
sort of frequency operator that plays the role of the frequency of periodic motion in classical
mechanics, and produces results free from secular terms. Because of the renewed interest in this
kind of approximation, here we develop a simpler method for the straightforward derivation of
analytic expressions for the frequency operator for general quantum mechanical anharmonic
oscillators.

2. Method

Given a quantum mechanical system with Hamiltonian operator Ĥ we try to solve the equation

[Ĥ , b̂] = −�̂b̂ (1)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator between linear operators Â and B̂, and �̂ = �̂†

is a constant of the motion:

[Ĥ , �̂] = 0. (2)

Under such conditions, the time evolution of the operator b̂ is

b̂(t) = exp

(
− it

h̄
�̂

)
b̂ (3)
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where b̂(0) = b̂ [4]. Since equation (1) does not determine the operator b̂ completely [4],
we should add a normalization condition, such as [b̂, b̂†] = 1̂ or Ĥ = b̂†b̂ + e1̂, where e is a
real number. From now on we omit the identity operator 1̂ and simply write 1 instead, when
necessary.

Bacus et al [5] proposed a solution to an equation similar to (1) in the form of an operator
series, with a convenient operator ordering. They were able to obtain remarkably accurate
eigenvalues for an anharmonic oscillator from a Riccati equation derived from that approach
in the coordinate representation. Here we try a different approach based on perturbation theory.
To this end, we write

Ĥ = Ĥ0 + λĤ ′ (4)

and look for solutions in the form of power series:

�̂ =
∞∑

j=0

�̂jλ
j (5a)

b̂ =
∞∑

j=0

b̂j λ
j . (5b)

One easily verifies that the coefficients �̂j and b̂j satisfy the perturbation equations

[Ĥ0, �̂j ] + [Ĥ ′, �̂j−1] = 0 (6a)

[Ĥ0, b̂j ] + �̂0b̂j = [b̂j−1, Ĥ
′] −

j∑
i=1

�̂i b̂j−i (6b)

as follows from equations (2) and (1), respectively. We assume that we can solve the equations
of order zero [Ĥ0, b̂0] = −�̂0b̂0 and [Ĥ0, �̂0] = 0 exactly. Equation (6a) determines �̂j except
for terms Ûj that commute with Ĥ0. All the terms in the right-hand side of equation (6b), except
the unknown part Ûj of �̂j , were obtained in previous steps. In order to solve equation (6b),
its right-hand side should be free from ‘secular’ terms Ẑj that satisfy the unperturbed equation

[Ĥ0, Ẑj ] + �̂0Ẑj = 0 (7)

and would give rise to singularities. Since Ûj b̂0 satisfies the latter equation, we set Ûj in order
to remove the unwanted terms. We can then solve equation (6b) for b̂j which is therefore
completely determined up to terms that satisfy equation (7). We obtain the latter by means of
an appropriate normalization condition as mentioned earlier. It will not be necessary for our
present goal, which is the calculation of �̂1. At first order in λ we have

[Ĥ0, �̂1] + [Ĥ ′, �̂0] = 0 (8a)

[Ĥ0, b̂1] + �̂0b̂1 = [b̂0, Ĥ
′] − �̂1b̂0. (8b)

Solving these perturbation equations for anharmonic oscillators offers no difficulty. For
simplicity, in what follows we choose dimensionless one-dimensional operators of the form

Ĥ = 1

2
p̂2 +

1

2
x̂2 +

λ

m
x̂m m = 4, 6, . . . (9)

where [x̂, p̂] = i. It is convenient to express the perturbation equations in terms of the creation
â† and annihilation â boson operators that satisfy the commutation relation [â, â†] = 1. We
choose

Ĥ0 = â†â + 1
2 (10)
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and

Ĥ ′ = 1

m
x̂m = 1

2m/2m
(â + â†)m (11)

so that b̂0 = â and �̂0 = 1. Equation (8a) reduces to [Ĥ0, �̂1] = 0, which tells us that �̂1 is a
function of Ĥ0. In order to solve equation (8b) we choose �̂1 in such a way that the right-hand
side of that equation is free from terms Ẑ1 that satisfy equation (7) with j = 1.

When working with the boson algebra it is customary to choose normal order in which
the creation operator appears to the left of the annihilation operator everywhere. To this end
Pathak developed a lengthy procedure in order to write x̂m in normal order [1]. Here, we
make use of a much simpler algorithm that consists of expanding a power of x̂ in the form of
a recurrence relation [6]:

x̂k = 1√
2
(â†x̂k−1 + x̂k−1â) +

k − 1

2
x̂k−2 k = 2, 3, . . . . (12)

Notice that x̂0 = 1 and x̂1 = x̂ are in normal order, and that if both x̂k−1 and x̂k−2 are in normal
order, then x̂k is in normal order too. By means of this recurrence relation we manipulate the
boson operators as if they were mere numbers because the normal order is always granted.
For example, if Ĥ ′ is in normal order, then we can formally write [â, Ĥ ′] = ∂Ĥ ′

∂â† , where the
derivative is carried out in the usual way. Proceeding as indicated it is clear that we can safely
ignore that the boson operators do not commute when solving equation (8b). This fact greatly
facilitates the calculation of analytic expressions of �̂1 for any desired value of m. Because
the procedure becomes tedious even for moderately great m, it is advisable to make use of
available software for symbolic computation, like MapleTM.

The operator �̂1â is a linear combination of terms of the form (â†)j âj+1 because �̂1 is a
polynomial function of â†â. Notice that P(â†, â) = [â, Ĥ ′] is a polynomial function of the
creation and annihilation operators with monomials (â†)j âk , and that∫ 2π

0
eit (eit â†)j (e−it â)k dt = 2πδk j+1(â

†)j âk. (13)

Therefore, we easily obtain �̂1 by means of the equation

�̂1â =
∫ 2π

0
eitP (eit â†, e−it â) dt (14)

where once again the normal order allows us to treat boson operators as mere numbers. Using
this simple recipe we easily obtain �̂1 for any anharmonic oscillator as a polynomial with
monomials (â†)j âj . In order to express such results in terms of Ĥ0 we have to rewrite that
polynomial in terms of monomials (â†â)j . To this end, we expand both sides of the well
known disentangling formula [6]

exp(θ â†â) =
∞∑

j=0

(eθ − 1)j

j !
(â†)j âj (15)

in a Taylor series about θ = 0, and compare like coefficients.
Table 1 shows �̂1(Ĥ0) for the anharmonic oscillators (9) with m = 2, 4, . . . , 14. We

have purposely included the exactly solvable harmonic perturbation m = 2 in order to test
our algorithm. In this case one easily proves that the frequency operator is a real number
�̂ = � = √

1 + λ for all λ > −1 (remember that we omit the identity operator). The
coefficient of the linear term of the Taylor expansion � = 1 + λ

2 − λ2

8 + · · · agrees with the

value of �̂1 for m = 2 in table 1, showing that our approach gives the correct answer for this
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Table 1. Perturbation correction �̂1 to the frequency operator for the anharmonic oscillators
Ĥ = 1

2 p̂2 + 1
2 x̂2 + λ

m
x̂m.

m �̂1

2 1
2

4 3
4 Ĥ0 + 3

8

6 5
4 Ĥ 2

0 + 5
4 Ĥ0 + 15

16

8 35
16 Ĥ 3

0 + 105
32 Ĥ 2

0 + 385
64 Ĥ0 + 315

128

10 63
16 Ĥ 4

0 + 63
8 Ĥ 3

0 + 819
32 Ĥ 2

0 + 693
32 Ĥ0 + 2835

256

12 231
32 Ĥ 5

0 + 1155
64 Ĥ 4

0 + 5775
64 Ĥ 3

0 + 15 015
128 Ĥ 2

0 + 71 379
512 Ĥ0 + 51 975

1024

14 429
32 Ĥ 6

0 + 1287
32 Ĥ 5

0 + 36 465
128 Ĥ 4

0 + 32 175
64 Ĥ 3

0 + 522 951
512 Ĥ 2

0 + 397 683
512 Ĥ0 + 675 675

2048

model. In order to check the expressions of �̂1 for anharmonic oscillators that we cannot solve
exactly, we simply take into account that those operators satisfy

En+1,1 − En,1 = 〈n|�̂1|n〉 (16)

where En,1 is the perturbation correction of first order to the eigenvalue with quantum number
n, and |n〉 is the corresponding eigenvector of the number operator â†â. For example, for the
quartic oscillator m = 4 we have [7]

En,1 = 3
8n2 + 3

8n + 3
16 (17)

and

En+1,1 − En,1 = 〈n|�̂1|n〉 = 3
4 (n + 1). (18)

Our expressions for �̂1 given in table 1 do not agree with Pathak’s [1] because the frequency
operator derived here by a pure operator method and perturbation theory is not exactly the one
that we should insert into the multiple-scale equations [2, 3]. Notice, for example, that the
expressions for the latter approach exhibit cosines in the denominators with the perturbation
parameter in their arguments [2,3]. Obviously, perturbation theory expands such trigonometric
functions in Taylor series and, consequently, they do not appear in the resulting perturbation
corrections that are independent of that parameter.

At first order we should write

b̂(t) � exp[−it (1 + λ�̂1)]â + λ exp(−it)b̂1. (19)

Since b̂1 is independent of time, this equation is free from secular terms. If for simplicity we
omit the second term from the right-hand side of this equation, and take into account that under
such a condition b̂ � â, then we obtain

x̂(t) � 1

2
[exp(−it�̂)x̂ + x̂ exp(it�̂)] +

i

2
[exp(−it�̂)p̂ − p̂ exp(it�̂)] (20)

where �̂ � 1 + λ�̂1. This equation is similar to those derived earlier [1–3], except for the
cosine denominators mentioned above.

3. Conclusions

We have presented a straightforward approach for the calculation of the frequency operator
for quantum mechanical anharmonic oscillators. The main advantage of our perturbation
method is that at first order it circumvents the noncommuting algebra of the boson operators,
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which we can thus treat as mere numbers. This fact greatly facilitates solving the perturbation
equations, specially for large anharmonic exponents m. However, at second order the situation
is completely different, and we have to take into account the order of the operators explicitly.
Moreover, the perturbation corrections of order greater than unity to the frequency operator do
not commute with Ĥ0, and are therefore more difficult to include in the calculation of physical
properties, particularly because they appear in the exponential term exp(− it

h̄
�̂), which we

should not expand in a Taylor series if we do not want to generate secular terms [8]. This
fact is probably the reason why most approaches developed to avoid secular terms in quantum
mechanical time-dependent perturbation theory do not go beyond the first order [1–3]. It is
worth mentioning, however, that the simple and straightforward ordering algorithm given by
equation (12) is still useful at these higher perturbation orders.
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